If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160+8x+x^2=180
We move all terms to the left:
160+8x+x^2-(180)=0
We add all the numbers together, and all the variables
x^2+8x-20=0
a = 1; b = 8; c = -20;
Δ = b2-4ac
Δ = 82-4·1·(-20)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*1}=\frac{4}{2} =2 $
| 3+9=-101-8x | | K^2+20=-11k | | 51/7-4y=7 | | 8z=14/4 | | -5/4+x=-1 | | 18x=7x+11 | | 8x=5,x+12 | | 4x2-3x-20=65 | | 5^(3x-2)=15 | | 9(4)x=144 | | 5^3x-2=15 | | 7x-84=84-x | | 30=9+z | | 15+2w-w2=0 | | -u+248=154 | | 4/3x+2=6/2x+1 | | x/2-5/7+3x=x-x/2 | | 7x^2=-4x-1 | | 294=-u+79 | | 13n-12=15n-22 | | 20+1,75x=0 | | 7x-5=16x-27 | | 12d=7d-20 | | c-40=40 | | 30+1,45x=0 | | -(2x-3)(5x+1)=0 | | 5−4+7x+1=7x | | 2+7y=27 | | 5c+14=9(-c+12+3c) | | 11^2x-8(11^x)+15=0 | | 10r+3r-13r+5r=20 | | 6(4x+6)=20 |